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Scaling and critical-like behavior in multidimensional diffusive dynamics
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The intermediate time dependence of the survival probability in two-dimensional diffusive dynam-
ics is investigated on a model myoglobin-CO potential-energy surface. For small diffusion anisotropy,
we derive a scaling relation for the characteristic time and exponent of the observed power-law de-

pendence, which is verified by exact two-dimensional calculations.

At higher anisotropy values,

we report a critical-like jump in the anisotropy dependence of the power-law exponent. Possible

experimental implications are discussed.

PACS number(s): 87.10.+e, 05.40.4+j, 82.20.Fd, 87.15.Rn

A well-known treatment of chemical reactions in solu-
tion [1] deals with diffusive motion of the reactants over
a one-dimensional (1D) potential barrier. The Kramers
model has found numerous applications in chemistry and
physics [2]. When chemical reactions occur in complex
environments, such as inside heme proteins [3-6], more
than one degree of freedom need be considered [7]. Since
the stochastic motion in the system and environment co-
ordinates will generally occur with different rates, one
is led to a model of anisotropic diffusion on a multi-
dimensional potential-energy surface. Several studies of
the anisotropy dependence of the reaction rate coeffi-
cient for this problem have recently appeared [8-10].
These refer to the long-time asymptotic characteristics
of the reactants’ survival probability. To cope with the
intermediate-time nonexponential behavior, experimen-
talists have developed a number of fitting formulas and
ad hoc empirical models [3,4]. We present a theoretical
analysis of the intermediate-time regime, which we com-
pare with exact numerical calculations. While our study
is motivated by the extensive results on CO binding to
myoglobin (Mb), the model presented is sufficiently sim-
ple and general to be of interest in other cases of interplay
between reaction and relaxation.

We consider two-dimensional (2D) diffusion in a (di-
mensionless) potential field, V(z,y), defined on a rect-
angular coordinate domain [Zm,Zar; Ym, Ynm]. Reflective
boundary conditions are imposed along the perimeter of
the rectangle. V is assumed to be a double-well potential
in z (but not necessarily in y). A ridgeline on the po-
tential surface separates the domain into reactants’ and
products’ regions, denoted by R and P, respectively. For
simplicity, we assume a constant, diagonal diffusion ten-
sor, (Dg,Dy). The corresponding Smoluchowski equa-
tion describes the time evolution of the probability den-
sity, p(z, y,t), for observing the system at (z,y) by time
t

6tp(1:a Y, t) = [Da:[*a: + Dyﬁy] P(-’IF, Y, t)- (1)

In Eq. (1), 8; = /9t while L, and L, are Smoluchowski
operators, incorporating the 2D potential

L, =08,e"VEvg,eVEy) 5= z,y. (2)

4

The initial condition, p(z,y,0) = é(z — o) 6(y — yo),
is chosen to be a é function centered at some point
(zo,y0) € R. It is convenient to measure time in units
of D71, i.e.,, t = §/D,. This scaling is natural when
D, > 0, since x motion is a prerequisite for barrier cross-
ing. Equation (1) then reads

391’(35, Y, 9) = [‘Cm + ﬂﬁy]p(m, Y, 0)7 (3)

where n = D, /D, is the “anisotropy parameter.”

When 1 < 1, by the time the slow y motion begins, fast
z dynamics is already governed by its lowest eigenvalue,
x(y), which is calculated from

Ly p(xv Y, 6) = _K’(y) p(xayve)' (4)

If, near some (y,zgr) € R, the potential is locally sepa-
rable

V(z,y) = Vi(z) + Va(y), (5)
one obtains the 1D sink Smoluchowski equation [7]

99B(y, 6) = [nL2 — K(y)] P(v, 0), (6)
valid for z &~ zg, where Ly = 9,e~2¥9,e"2(¥) and

p(y,0) = f;: p(z,y,0) xr(z,y)dz. The characteristic
function xgr(z,y) equals 1 if (z,y) € R and 0 other-
wise. This reduction of the 2D equation to an effective
1D equation with the sink term x(y), analogous to the
Born-Oppenheimer approximation in quantum mechan-
ics, has been justified in several recent expositions [9,11].

We are particularly interested in the time dependence
of the survival probability

so=["sw0d= [[ revoaa @

m

for various anisotropy values 1. By integrating Eq. (6)
over y, using the reflective boundary conditions in the
form f:M dyL25(y,8) = 0, and the initial condition,
S(0) =1, we obtain

‘]
S(8) = exp (— /0 (R de'> , 8)
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where (k), = f:: x(y) p(y, 0) dy /S(6). While this result
is similar to the heuristic model of Ref. [4], it follows here
as the exact solution of Eq. (6). This solution is formal,
since calculation of the time-dependent rate coefficient
(K)g still requires the solution of Eq. (6). Equation (8)
may serve as a basis for approximations. For example,
one may assume that the normalized density /5, relaxes
without widening. Relaxation will therefore be deter-
mined only by the average value of the coordinate (y)(t).
For the potential considered below V3 (y) = %uy2, so that
(y)(t) will relax exponentially for large D,t. Therefore

Py, 7)/S(T) = 6(y — (y)) = 8(y — yoe™ "), (9)

where we have defined dimensionless time by 7 = nvé.
Inserting into Eq. (8) yields an explicit expression for the
logarithmic derivative of the survival probability

dln S(7)
dint

We have recently shown [11] that the approximation on
the right-hand side agrees semiquantitatively with the
exact numerical solution of Eq. (1) in the small-n regime.

The logarithmic derivative in Eq. (10) enables the dis-
cussion of the time dependence of S(7) for n <« 1. As
T — 00, B(1) — 7k(0) so that S(7) decays exponen-
tially with a rate coefficient x(0), where y = 0 represents
the minimum of V,(y). This is a poor description of the
anisotropy dependence of the equilibrium rate coefficient,
since x(0) is independent of 7. More insight is gained in
the analysis of the intermediate-time behavior of S(7). It
will be a power law when B(7) ~const, for example, near
extrema of B(7). Given an extremum at 7o, one expects
that S(7) oc 77 in the vicinity of 7,. From Eq. (10) one
finds that « is given by [11]

o = B(ra)/(vn). (11)

Since for n <« 1, B(7) is a universal function which is
independent of both v and 7, we obtain a simple scaling
relation for « in this regime. This differs, of course, from
the scaling behavior of the survival probability [12]. We
believe this is the first time a scaling behavior of « itself is
revealed. By definition the time 6, around which power-
law behavior is observed exhibits similar scaling, 8, =
7o /(vn). Hence the above relations may be written as

/0o = B(Ta)/Ta = K(yoe™ ™). (12)

In experimental systems, n will usually vary with exter-
nal parameters such as temperature or solvent viscosity.
Unfortunately, this dependence is not easily measured.
In contrast, one may obtain both a and 6, from a single
measurement of S(t).

Figure 1 shows the 2D potential-energy surface used
in our study. It comes from a model [7] for CO bind-
ing to the iron-porphyrin complex in Mb. z is the Fe-
CO distance, hence the well on the left represents bound
CO while that on the right represents dissociated CO,
trapped inside the “heme pocket.” y is a “protein coor-
dinate” depicting large-scale nonequilibrium protein mo-
tions and influencing heme reactivity possibly by modu-
lation of the iron out-of-(the porphyrin plane) distance.

B(t)= —nv ~ 7 K(yoe ). (10)
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FIG. 1.

The potential-energy surface for CO binding to
Mb. The potential is defined by Eq. (4) in Ref. [7], with its
parameters collected in Table I of Ref. [7]. The contours are
labeled in kcal/mol. The dimensionless potential V(z,y) is
gotten by dividing the potential by ksT', where kg is Boltz-
mann’s constant and 7' = 200 K (= the solvent glass tran-
sition), so that kT = 0.39 kcal/mol. The (dimensionless)
force constant for the protein coordinate is v = 35.9. The 3D
plot shown above the contour plot uses the same 75 x 50 grid
as in the numerical calculation.

Experiment [5] and molecular-dynamic simulations [13]
show that both ligand and protein motions are diffusive
for times longer than a few hundred picoseconds. On
these time scales, the iron motion is already expected
to be tightly coupled to the protein. Treatment of the
ballistic iron motion at shorter times may require the
introduction of an additional coordinate [14]. The reac-
tants region R, representing unbound Mb+CO, is on the
right of the ridgeline. Though other dividing lines may
be suggested, the ridgeline is a simple, reasonable choice.
At the initiation of the experiment, the reactants are pre-
pared by photodissociating MbCO which is equilibrated
in P, to the left of the ridgeline, producing an initial dis-
tribution in R. We consider an infinitely narrow initial
distribution which is placed at (zo, yo) = (2.5,1.1). How-
ever, we find that a(n) depends only slightly on the initial
location in this region of R. The Mb potential is cut at
ym = 1.3 to disallow barrier crossing in the y direction
directly from the reactants’ well, as this produces a fi-
nite limiting value for o [11], thus obscuring the scaling
behavior for n — oo.

The exact solution of the Smoluchowski equation (1)
has been propagated numerically as in our previous
work [10] and integrated to obtain the survival prob-
ability, Eq. (7). Unlike stochastic trajectory methods,
zero statistical noise is involved in the propagation of the
partial differential equation. The anisotropy was varied
by arbitrarily setting D, = 1 and changing D,. The
survival probability was then plotted on a log-log scale
and inspected visually for an inflection point 6,. Lin-
ear regression was used to determine «, with data points
eliminated from both sides of 6, until a correlation co-
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TABLE 1.

SCALING AND CRITICAL-LIKE BEHAVIOR IN . ..

Parameters for the two power-law phases as ob-

tained from diffusive dynamics on the potential-energy surface
of Fig. 1. The notation is z[y] = z x 10%.

n a /% o2 6a,
1[-4] 5.82[-1] 2.0[1]
1[-3] 8.49[-2] 3.0[0] 7.27[-5] 1.2[2]
1[-2] 8.89[-3] 3.4[-1] 7.33[-6] 1.2[1]
1[-1] 1.89[-4] 8.2-2] 7.63[-7] 1.2 [0]
2[-1] 1.93[-5] 6.0[-2] 3.90[-7] 5.9[-1]
3[-1] 3.29[-6] 5.3-2]
4[-1] 7.52[-7] 5.6[-2] 1.96[-7) 2.7[-1)
5[-1] 2.22[-7] 6.3-2] 1.43[-7] 1.8[-1]
1[0] 2.09[-9] 1.1[-2] 2.32[-10] 2.1[-2]
2[0] 1.88[-11] 6.4[-3]
3[0] 8.40[-13] 4.9[-3]
4[0] 6.81[-14] 3.8[-3]
5[0] 9.10[-15] 3.3[-3]
1[1] 9.89]-18] 2.0[-3]
2[1] 5.01[-21] 1.1[-3]
3[1] 4.65[-23] 8.3-4]
4[1] 1.50[-24] 6.5[-4]
5[1] 1.01[-25] 5.4[-4]
12] 1.94[-29] 3.1[-4]

efficient better than 0.995 was obtained. This procedure
is demonstrated elsewhere [11]. Using it, two distinct
power-law regimes were found for n < 1; see Table I.
The dependence of a; and as on anisotropy is shown in
Fig. 2.

To analyze this dependence in the n <« 1 regime, we
plot in Fig. 3 the universal function 7 k(yoe™"), approx-
imating the logarithmic derivative in Eq. (10). Initially,
this function increases linearly with a slope x(yo). Sub-
sequently, yoe™" decreases and so does k. This follows
from the shape of the potential in Fig. 1, which leads to a
monotonic dependence of k(y) on y. Therefore B(7) ex-
hibits a maximum, see Fig. 3, giving rise to ;. At large
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FIG. 2. Dependence of the exponents of the two power-

law phases on anisotropy. i is represented by open circles,
connected by a bold curve to guide the eye, while az is rep-
resented by open squares. The dashed curves are the approx-
imate scaling relation, Eq. (11), using B(7,;) from Fig. 3.
The inset shows an enlargement of the transition region near
n=1.
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FIG. 3.

The universal logarithmic derivative, as obtained
from the approximation in Eq. (10). From its maximum and
minimum we obtain (7a;, B(Ta;)) = (8.41x1072, 2.36x1073)
and (4.01, 1.28 x 10~7) for i = 1 and 2, respectively. The
inset shows the same data on a linear 7 scale, emphasizing
the long-time linear dependence on 7.

7, B(7) increases linearly with 7, B(1) =~ x(0)7. Con-
sequently one has a minimum in Fig. 3, which defines
ag. Thus for MbCO two power-law phases are predicted.
The first, around the maximum in B(7), represents the
onset of protein (y motion) relaxation, while the second,
near the minimum in B(7), signals its termination.

Extracting B(7,,;) from Fig. 3 yields the two dashed
lines in Fig. 2 representing the scaling relation (11) for
a;, 1 = 1,2. Agreement is particularly good for a;, indi-
cating that the theoretical scaling law (11) describes the
exact n dependence without any adjustable parameters.
For a, the approximate estimate of B(7,,) is inaccurate,
but scaling with 1/ still holds. One also notes (Table I)
that the predicted constancy of a/6,, Eq. (12), indeed
holds for n < 0.01.

Theory for the a(n) dependence for larger-n values is
still lacking, hence we investigate it numerically. As 7
approaches unity (isotropic diffusion limit) the scaling
relation breaks down, and the o; decrease much faster
than 1/7n. The inset to Fig. 2 shows the behavior in this
region. A jump in the values of o; is observed, resembling
a first-order phase transition, which is quite unexpected
for a diffusive process. In this region B(7) is no longer
a universal function. Figure 4 shows its behavior as ob-
tained from our 2D propagations. As 7 increases, the
peak that prevailed at small 7 disappears and a new peak
grows at a smaller value of 7. The critical value of 7 for
this transition is around 7. = 0.59. Subsequently, there
is a second kind of transition, where the new minimum
in B(7) diminishes and eventually grows negative. The
value of 7 at which B(7,,) = 0 is around 1.07. Finally, for
n — oo we find (Fig. 2) that a3 o< n712-5, It is remarkable
that the same trend in a; seems to hold over 20 orders
of magnitude in the large-n region. To obtain this data,
quadruple precision (32-digit accuracy) has been used on
a Convex computer. As 7 increases, a qualitatively sim-
ilar behavior is observed in less significant digits. While
this self-similarity may be interesting theoretically, it is
hard to see its experimental significance.



3720 SAVELY RABINOVICH AND NOAM AGMON 47

_5 L
—~
=
~— _g|
an]
=1
o))
O v/
o]
exact numerical
0.1 1 10
FIG. 4. The logarithmic derivative of the survival proba-

bility, as obtained from exact 2D propagations for the indi-
cated values of 7.

The physical significance of the behavior in the n < 1
regime does seem clear. An initially narrow distribution
of protein conformations (y values) widens to produce
a power-law decay. However, even the relaxation of a
zero-width distribution, Eq. (9), will produce a power-
law phase. Therefore, power-law kinetics is not limited to
the case thus far monitored experimentally [4], namely,
an initially wide conformational distribution. If a very
narrow distribution of substates could be prepared, it
should show exponential kinetics at very low tempera-
tures and power-law kinetics developing at higher tem-
peratures. This is just the reverse of the usual trend.

The temperature dependence of the power-law phase
may be understood if one assumes that 7 increases mono-
tonically with T" due to increasing protein relaxation.

(This neglects the weaker T" dependence in the Smolu-
chowski operator.) As 7 increases, one expects the power-
law regime to occur earlier and exhibit a smaller power,
Eq. (11). Since o depends only weakly on initial condi-
tions for n <« 1, a similar behavior should occur also for a
wide initial distribution [4]. Because 8, = Dytq, Eq. (12)
could be used to extract the temperature dependence of
D, from kinetic data [4] just above the glass transition.
At higher temperatures our calculations suggest the ex-
istence of a “critical temperature” T, corresponding to
1. at which a drops discontinuously to a small, unmea-
surable value (Figs. 2 and 4). It would be interesting if
evidence for such behavior could be found in heme pro-
tein dynamics.

The power law persists until the distribution relaxes in
R. Thereafter, binding proceeds exponentially but at a
much slower rate than either initially or at low temper-
atures [7]. The increase of the geminate recombination
barrier with temperature has been recently verified by
experiment [4, 6]. This “anti-Arrhenius” slowing down
of binding with increasing temperature could provide a
“self-cooperativity” mechanism [7] for disabling the re-
verse rebinding process following ligand dissociation, thus
assuring that ligand release proceeds to completion.
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